morpheus_bootloader/tui/distro_downloader/commit_download.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
//! Download commit flow - transitions from UEFI to bare-metal for ISO download.
//!
//! This module handles the critical ExitBootServices transition:
//! 1. User has selected ISO from catalog and confirmed download
//! 2. This module prepares the BootHandoff structure
//! 3. Calibrates TSC timing
//! 4. Calls ExitBootServices (POINT OF NO RETURN)
//! 5. Jumps to bare_metal_main for actual download
//!
//! # Safety
//! After ExitBootServices:
//! - No UEFI runtime services for networking
//! - No heap allocator (must pre-allocate)
//! - No screen/console output (use serial)
//! - Must use pre-allocated stack
extern crate alloc;
use alloc::string::String;
use core::ffi::c_void;
use core::ptr;
use crate::boot::network_boot::{
enter_network_boot_url, prepare_handoff_with_blk, BlkProbeResult, NicProbeResult,
};
use crate::tui::renderer::{
Screen, EFI_BLACK, EFI_CYAN, EFI_DARKGRAY, EFI_LIGHTGREEN, EFI_RED, EFI_YELLOW,
};
use morpheus_network::boot::handoff::BootHandoff;
/// Result of download commit operation.
#[derive(Debug)]
pub enum CommitResult {
/// Download completed successfully, system should reboot
Success,
/// Download failed, error message available
Failed(&'static str),
/// User cancelled before commit
Cancelled,
}
/// Configuration for download commit.
pub struct DownloadCommitConfig {
/// URL to download from
pub iso_url: String,
/// Expected size in bytes (for progress)
pub iso_size: u64,
/// Name of the distro (for display)
pub distro_name: String,
}
/// UEFI memory types (from UEFI spec)
const EFI_LOADER_DATA: usize = 2;
const EFI_ALLOCATE_MAX_ADDRESS: usize = 1;
const EFI_ALLOCATE_ANY_PAGES: usize = 0;
/// Commit to download - this exits boot services and downloads in bare-metal mode.
///
/// # POINT OF NO RETURN
/// Once this function calls ExitBootServices, there's no going back.
/// The system will either:
/// 1. Download successfully and reboot
/// 2. Fail and panic (requires power cycle)
///
/// # Arguments
/// * `boot_services` - Pointer to UEFI boot services table
/// * `image_handle` - UEFI image handle
/// * `screen` - Screen for status display (unusable after EBS)
/// * `config` - Download configuration
///
/// # Safety
/// This function will never return on success. On failure, it loops forever.
pub unsafe fn commit_to_download(
boot_services: *const crate::BootServices,
image_handle: *mut (),
screen: &mut Screen,
config: DownloadCommitConfig,
) -> ! {
let bs = &*boot_services;
// Display countdown and status
display_commit_countdown(screen, &config, bs);
// Phase 1: Allocate DMA region (must be <4GB for VirtIO)
screen.clear();
screen.put_str_at(
5,
2,
"=== Preparing Download Environment ===",
EFI_LIGHTGREEN,
EFI_BLACK,
);
let mut log_y = 4;
screen.put_str_at(5, log_y, "Allocating DMA region...", EFI_YELLOW, EFI_BLACK);
log_y += 1;
const DMA_SIZE: usize = 8 * 1024 * 1024; // 8MB DMA pool
const DMA_PAGES: usize = DMA_SIZE / 4096;
let mut dma_region: u64 = 0xFFFF_FFFF; // Max address hint
let status = (bs.allocate_pages)(
EFI_ALLOCATE_MAX_ADDRESS,
EFI_LOADER_DATA,
DMA_PAGES,
&mut dma_region,
);
if status != 0 {
screen.put_str_at(7, log_y, "DMA allocation failed!", EFI_RED, EFI_BLACK);
log_y += 1;
screen.put_str_at(7, log_y, "Cannot proceed with download", EFI_RED, EFI_BLACK);
// Hang forever
loop {
core::hint::spin_loop();
}
}
// Zero the DMA region
ptr::write_bytes(dma_region as *mut u8, 0, DMA_SIZE);
screen.put_str_at(
7,
log_y,
&alloc::format!("DMA base: {:#x}", dma_region),
EFI_CYAN,
EFI_BLACK,
);
log_y += 2;
// Phase 2: Allocate stack for bare-metal mode
screen.put_str_at(
5,
log_y,
"Allocating bare-metal stack...",
EFI_YELLOW,
EFI_BLACK,
);
log_y += 1;
const STACK_SIZE: usize = 256 * 1024; // 256KB stack
const STACK_PAGES: usize = STACK_SIZE / 4096;
let mut stack_region: u64 = 0;
let status = (bs.allocate_pages)(
EFI_ALLOCATE_ANY_PAGES,
EFI_LOADER_DATA,
STACK_PAGES,
&mut stack_region,
);
if status != 0 {
screen.put_str_at(7, log_y, "Stack allocation failed!", EFI_RED, EFI_BLACK);
loop {
core::hint::spin_loop();
}
}
let stack_top = stack_region + STACK_SIZE as u64; // Stack grows down
screen.put_str_at(
7,
log_y,
&alloc::format!("Stack: {:#x}", stack_region),
EFI_CYAN,
EFI_BLACK,
);
log_y += 2;
// Phase 3: Calibrate TSC using UEFI Stall
screen.put_str_at(5, log_y, "Calibrating TSC timing...", EFI_YELLOW, EFI_BLACK);
log_y += 1;
let tsc_freq = calibrate_tsc_with_stall(bs);
screen.put_str_at(
7,
log_y,
&alloc::format!("TSC: {} Hz", tsc_freq),
EFI_CYAN,
EFI_BLACK,
);
log_y += 2;
// Phase 4: Probe VirtIO NIC via PCI (just finding it, not initializing)
screen.put_str_at(
5,
log_y,
"Probing VirtIO network device...",
EFI_YELLOW,
EFI_BLACK,
);
log_y += 1;
let nic_probe = probe_virtio_nic_with_debug(screen, &mut log_y);
if nic_probe.mmio_base == 0 {
screen.put_str_at(
7,
log_y,
"Ensure QEMU has: -device virtio-net-pci,netdev=...",
EFI_RED,
EFI_BLACK,
);
loop {
core::hint::spin_loop();
}
}
log_y += 1;
// Phase 4b: Probe VirtIO block device for disk writes
screen.put_str_at(
5,
log_y,
"Probing VirtIO block device...",
EFI_YELLOW,
EFI_BLACK,
);
log_y += 1;
let blk_probe = probe_virtio_blk_with_debug(screen, &mut log_y);
// Check device_type for device presence (mmio_base is 0 for PCI Modern)
let has_blk = blk_probe.device_type != 0;
if has_blk {
if blk_probe.transport_type == 1 {
// PCI Modern
screen.put_str_at(
7,
log_y,
&alloc::format!(
"VirtIO-blk (PCI Modern) common_cfg: {:#x}",
blk_probe.common_cfg
),
EFI_LIGHTGREEN,
EFI_BLACK,
);
} else {
// Legacy MMIO
screen.put_str_at(
7,
log_y,
&alloc::format!("VirtIO-blk found at {:#x}", blk_probe.mmio_base),
EFI_LIGHTGREEN,
EFI_BLACK,
);
}
} else {
screen.put_str_at(
7,
log_y,
"No VirtIO-blk found (ISO won't be saved to disk)",
EFI_YELLOW,
EFI_BLACK,
);
}
log_y += 1;
// Phase 4c: Find ESP Partition Start
screen.put_str_at(5, log_y, "Locating ESP partition...", EFI_YELLOW, EFI_BLACK);
log_y += 1;
let esp_lba = find_esp_lba(bs, image_handle).unwrap_or(2048);
screen.put_str_at(
7,
log_y,
&alloc::format!("ESP Start LBA: {}", esp_lba),
EFI_LIGHTGREEN,
EFI_BLACK,
);
log_y += 1;
// Phase 5: Prepare BootHandoff (static allocation for post-EBS)
screen.put_str_at(5, log_y, "Preparing boot handoff...", EFI_YELLOW, EFI_BLACK);
log_y += 1;
// Allocate handoff in loader data so it survives EBS
let mut handoff_page: u64 = 0;
let status = (bs.allocate_pages)(
EFI_ALLOCATE_ANY_PAGES,
EFI_LOADER_DATA,
1, // 4KB is plenty
&mut handoff_page,
);
if status != 0 {
screen.put_str_at(7, log_y, "Handoff allocation failed!", EFI_RED, EFI_BLACK);
loop {
core::hint::spin_loop();
}
}
let handoff_ptr = handoff_page as *mut BootHandoff;
let handoff = prepare_handoff_with_blk(
&nic_probe,
&blk_probe,
[0x52, 0x54, 0x00, 0x12, 0x34, 0x56], // QEMU default MAC (placeholder)
dma_region,
dma_region, // Bus addr = CPU addr (no IOMMU)
DMA_SIZE as u64,
tsc_freq,
stack_top,
STACK_SIZE as u64,
);
ptr::write(handoff_ptr, handoff);
let handoff_ref: &'static BootHandoff = &*handoff_ptr;
screen.put_str_at(7, log_y, "Handoff ready", EFI_CYAN, EFI_BLACK);
log_y += 2;
// Phase 6: Store URL for bare-metal use
let url_copy = leak_string(&config.iso_url);
// Phase 7: Final countdown before EBS
screen.put_str_at(
5,
log_y,
"=== EXITING BOOT SERVICES ===",
EFI_RED,
EFI_BLACK,
);
log_y += 1;
screen.put_str_at(5, log_y, "After this point:", EFI_YELLOW, EFI_BLACK);
log_y += 1;
screen.put_str_at(7, log_y, "- Screen output will stop", EFI_YELLOW, EFI_BLACK);
log_y += 1;
screen.put_str_at(
7,
log_y,
"- Progress via serial console only",
EFI_YELLOW,
EFI_BLACK,
);
log_y += 1;
screen.put_str_at(
7,
log_y,
"- System will reboot when done",
EFI_YELLOW,
EFI_BLACK,
);
log_y += 2;
// Brief pause for user to see message
for _ in 0..200_000_000u64 {
core::hint::spin_loop();
}
screen.put_str_at(5, log_y, "Exiting boot services NOW...", EFI_RED, EFI_BLACK);
log_y += 1;
// ═══════════════════════════════════════════════════════════════════════
// POINT OF NO RETURN - EXIT BOOT SERVICES
// ═══════════════════════════════════════════════════════════════════════
// Show progress since get_memory_map can be slow
screen.put_str_at(7, log_y, "Reading memory map...", EFI_YELLOW, EFI_BLACK);
// Get memory map first
let mut mmap_size: usize = 4096;
let mut mmap_buf = [0u8; 8192]; // Large enough buffer
let mut map_key: usize = 0;
let mut desc_size: usize = 0;
let mut desc_version: u32 = 0;
// First call to get required size
let _ = (bs.get_memory_map)(
&mut mmap_size,
mmap_buf.as_mut_ptr(),
&mut map_key,
&mut desc_size,
&mut desc_version,
);
// Increase buffer size to be safe
mmap_size += 1024;
// Second call with proper size
let status = (bs.get_memory_map)(
&mut mmap_size,
mmap_buf.as_mut_ptr(),
&mut map_key,
&mut desc_size,
&mut desc_version,
);
screen.put_str_at(
7,
log_y,
"Memory map obtained ",
EFI_LIGHTGREEN,
EFI_BLACK,
);
if status != 0 {
// Cannot display error properly at this point
loop {
core::hint::spin_loop();
}
}
// Exit boot services - MUST succeed
let status = (bs.exit_boot_services)(image_handle, map_key);
if status != 0 {
// Fatal - cannot recover, memory map may have changed
// Try once more with fresh map
let _ = (bs.get_memory_map)(
&mut mmap_size,
mmap_buf.as_mut_ptr(),
&mut map_key,
&mut desc_size,
&mut desc_version,
);
let status = (bs.exit_boot_services)(image_handle, map_key);
if status != 0 {
loop {
core::hint::spin_loop();
}
}
}
// ═══════════════════════════════════════════════════════════════════════
// WE ARE NOW IN BARE-METAL MODE
// - No UEFI services available
// - Must use serial for output
// - Must use our own drivers
// ═══════════════════════════════════════════════════════════════════════
// Enter bare-metal download
let _result = enter_network_boot_url(handoff_ref, url_copy, esp_lba);
// If we get here, download completed (success or failure)
// In bare-metal mode, we can't return to UEFI - must reset
loop {
core::hint::spin_loop();
}
}
/// Display countdown before committing to download.
fn display_commit_countdown(
screen: &mut Screen,
config: &DownloadCommitConfig,
bs: &crate::BootServices,
) {
screen.clear();
screen.put_str_at(
5,
2,
"=== Download Confirmation ===",
EFI_LIGHTGREEN,
EFI_BLACK,
);
screen.put_str_at(5, 4, "About to download:", EFI_YELLOW, EFI_BLACK);
screen.put_str_at(7, 5, &config.distro_name, EFI_CYAN, EFI_BLACK);
screen.put_str_at(
7,
6,
&alloc::format!("Size: {} MB", config.iso_size / (1024 * 1024)),
EFI_CYAN,
EFI_BLACK,
);
screen.put_str_at(
5,
8,
"WARNING: This will exit UEFI boot services!",
EFI_RED,
EFI_BLACK,
);
screen.put_str_at(
5,
9,
"The system cannot be interrupted during download.",
EFI_RED,
EFI_BLACK,
);
// Use UEFI Stall for accurate 1-second delays (1_000_000 microseconds = 1 second)
screen.put_str_at(5, 11, "Starting in 3...", EFI_YELLOW, EFI_BLACK);
let _ = (bs.stall)(1_000_000);
screen.put_str_at(5, 11, "Starting in 2...", EFI_YELLOW, EFI_BLACK);
let _ = (bs.stall)(1_000_000);
screen.put_str_at(5, 11, "Starting in 1...", EFI_YELLOW, EFI_BLACK);
let _ = (bs.stall)(1_000_000);
}
/// Calibrate TSC frequency using UEFI Stall service.
/// Must be called BEFORE ExitBootServices.
fn calibrate_tsc_with_stall(bs: &crate::BootServices) -> u64 {
// Read TSC before and after 10ms stall
let start_tsc = read_tsc();
// UEFI Stall takes microseconds - stall for 10ms (10,000 us)
let _ = (bs.stall)(10_000);
let end_tsc = read_tsc();
// Calculate ticks for 10ms
let ticks_10ms = end_tsc.saturating_sub(start_tsc);
// Extrapolate to 1 second (multiply by 100)
let tsc_freq = ticks_10ms.saturating_mul(100);
// Sanity check: expect 1-10 GHz range
if tsc_freq < 1_000_000_000 || tsc_freq > 10_000_000_000 {
// Fallback to 2.5 GHz if result seems wrong
2_500_000_000
} else {
tsc_freq
}
}
/// Read TSC (Time Stamp Counter).
fn read_tsc() -> u64 {
let lo: u32;
let hi: u32;
unsafe {
core::arch::asm!(
"rdtsc",
out("eax") lo,
out("edx") hi,
options(nomem, nostack)
);
}
((hi as u64) << 32) | (lo as u64)
}
/// Probe for VirtIO NIC via PCI config space.
/// Returns NicProbeResult with full transport information.
fn probe_virtio_nic_with_debug(screen: &mut Screen, log_y: &mut usize) -> NicProbeResult {
// VirtIO vendor ID: 0x1AF4
// VirtIO-net device IDs: 0x1000 (transitional), 0x1041 (modern)
const VIRTIO_VENDOR: u16 = 0x1AF4;
const VIRTIO_NET_LEGACY: u16 = 0x1000;
const VIRTIO_NET_MODERN: u16 = 0x1041;
// PCI config space constants
const PCI_STATUS_REG: u8 = 0x06;
const PCI_CAP_PTR: u8 = 0x34;
const PCI_CAP_ID_VNDR: u8 = 0x09; // Vendor-specific (VirtIO uses this)
// VirtIO PCI capability types
const VIRTIO_PCI_CAP_COMMON: u8 = 1;
const VIRTIO_PCI_CAP_NOTIFY: u8 = 2;
const VIRTIO_PCI_CAP_ISR: u8 = 3;
const VIRTIO_PCI_CAP_DEVICE: u8 = 4;
// Use legacy PCI config space access (port I/O)
const PCI_CONFIG_ADDR: u16 = 0xCF8;
const PCI_CONFIG_DATA: u16 = 0xCFC;
fn pci_read32(bus: u8, device: u8, func: u8, offset: u8) -> u32 {
let addr: u32 = (1 << 31) // Enable bit
| ((bus as u32) << 16)
| ((device as u32) << 11)
| ((func as u32) << 8)
| ((offset as u32) & 0xFC);
unsafe {
core::arch::asm!(
"out dx, eax",
in("dx") PCI_CONFIG_ADDR,
in("eax") addr,
options(nomem, nostack)
);
let value: u32;
core::arch::asm!(
"in eax, dx",
in("dx") PCI_CONFIG_DATA,
out("eax") value,
options(nomem, nostack)
);
value
}
}
fn pci_read16(bus: u8, device: u8, func: u8, offset: u8) -> u16 {
let val32 = pci_read32(bus, device, func, offset & 0xFC);
((val32 >> ((offset & 2) * 8)) & 0xFFFF) as u16
}
fn pci_read8(bus: u8, device: u8, func: u8, offset: u8) -> u8 {
let val32 = pci_read32(bus, device, func, offset & 0xFC);
((val32 >> ((offset & 3) * 8)) & 0xFF) as u8
}
/// Read BAR address, handling 32-bit and 64-bit BARs.
fn read_bar(bus: u8, device: u8, func: u8, bar_index: u8) -> u64 {
let bar_offset = 0x10 + bar_index * 4;
let bar_val = pci_read32(bus, device, func, bar_offset);
if bar_val & 1 == 0 {
// Memory BAR
let base = (bar_val & 0xFFFFFFF0) as u64;
if (bar_val >> 1) & 3 == 2 {
// 64-bit BAR - read upper 32 bits from next BAR
let bar_hi = pci_read32(bus, device, func, bar_offset + 4);
base | ((bar_hi as u64) << 32)
} else {
base
}
} else {
// I/O BAR
(bar_val & 0xFFFFFFFC) as u64
}
}
screen.put_str_at(7, *log_y, "Scanning PCI bus 0...", EFI_DARKGRAY, EFI_BLACK);
*log_y += 1;
// Scan PCI bus 0 (QEMU puts virtio devices here)
for device in 0..32u8 {
let id = pci_read32(0, device, 0, 0);
// Skip empty slots
if id == 0xFFFFFFFF || id == 0 {
continue;
}
let vendor = (id & 0xFFFF) as u16;
let dev_id = ((id >> 16) & 0xFFFF) as u16;
// Show what we find
screen.put_str_at(
9,
*log_y,
&alloc::format!("PCI 0:{:02}:0 - {:04x}:{:04x}", device, vendor, dev_id),
EFI_DARKGRAY,
EFI_BLACK,
);
*log_y += 1;
// Check for VirtIO network device
if vendor == VIRTIO_VENDOR && (dev_id == VIRTIO_NET_LEGACY || dev_id == VIRTIO_NET_MODERN) {
let is_modern = dev_id == VIRTIO_NET_MODERN;
screen.put_str_at(
9,
*log_y,
&alloc::format!(
" ^ VirtIO-net found! ({})",
if is_modern {
"PCI Modern"
} else {
"PCI Legacy/Transitional"
}
),
EFI_LIGHTGREEN,
EFI_BLACK,
);
*log_y += 1;
// Read BAR0 for base address
let bar0 = pci_read32(0, device, 0, 0x10);
screen.put_str_at(
9,
*log_y,
&alloc::format!(" BAR0: {:#010x}", bar0),
EFI_DARKGRAY,
EFI_BLACK,
);
*log_y += 1;
// Check if device has capabilities (for PCI Modern)
let status = pci_read16(0, device, 0, PCI_STATUS_REG);
let has_caps = (status & 0x10) != 0;
if has_caps {
screen.put_str_at(9, *log_y, " PCI Capabilities present", EFI_CYAN, EFI_BLACK);
*log_y += 1;
// Capability info storage
let mut common_bar: u8 = 0;
let mut common_offset: u32 = 0;
let mut notify_bar: u8 = 0;
let mut notify_offset: u32 = 0;
let mut notify_off_multiplier: u32 = 0;
let mut isr_bar: u8 = 0;
let mut isr_offset: u32 = 0;
let mut device_bar: u8 = 0;
let mut device_offset: u32 = 0;
let mut found_common = false;
let mut found_notify = false;
let mut found_isr = false;
let mut found_device = false;
// Walk capability chain to find VirtIO caps
let mut cap_offset = pci_read8(0, device, 0, PCI_CAP_PTR) & 0xFC;
while cap_offset != 0 && cap_offset < 0xFF {
let cap_id = pci_read8(0, device, 0, cap_offset);
let next = pci_read8(0, device, 0, cap_offset + 1);
if cap_id == PCI_CAP_ID_VNDR {
// VirtIO capability structure (per spec 4.1.4.3):
// +0: cap_vndr (0x09)
// +1: cap_next
// +2: cap_len
// +3: cfg_type
// +4: bar
// +5-7: padding
// +8: offset (4 bytes)
// +12: length (4 bytes)
// For notify: +16: notify_off_multiplier (4 bytes)
let cfg_type = pci_read8(0, device, 0, cap_offset + 3);
let bar = pci_read8(0, device, 0, cap_offset + 4);
let offset = pci_read32(0, device, 0, cap_offset + 8);
let cap_name = match cfg_type {
1 => "common_cfg",
2 => "notify_cfg",
3 => "isr_cfg",
4 => "device_cfg",
5 => "pci_cfg",
_ => "unknown",
};
screen.put_str_at(
9,
*log_y,
&alloc::format!(
" Cap @{:#04x}: type={} bar={} off={:#x}",
cap_offset,
cap_name,
bar,
offset
),
EFI_DARKGRAY,
EFI_BLACK,
);
*log_y += 1;
match cfg_type {
VIRTIO_PCI_CAP_COMMON => {
found_common = true;
common_bar = bar;
common_offset = offset;
}
VIRTIO_PCI_CAP_NOTIFY => {
found_notify = true;
notify_bar = bar;
notify_offset = offset;
// Read notify_off_multiplier (at offset +16 in capability)
notify_off_multiplier = pci_read32(0, device, 0, cap_offset + 16);
screen.put_str_at(
9,
*log_y,
&alloc::format!(
" notify_off_multiplier: {}",
notify_off_multiplier
),
EFI_DARKGRAY,
EFI_BLACK,
);
*log_y += 1;
}
VIRTIO_PCI_CAP_ISR => {
found_isr = true;
isr_bar = bar;
isr_offset = offset;
}
VIRTIO_PCI_CAP_DEVICE => {
found_device = true;
device_bar = bar;
device_offset = offset;
}
_ => {}
}
}
cap_offset = next & 0xFC;
}
// If we found all required PCI Modern caps, use them
if found_common && found_notify {
screen.put_str_at(
9,
*log_y,
" PCI Modern: All required caps found!",
EFI_LIGHTGREEN,
EFI_BLACK,
);
*log_y += 1;
// Read BAR bases for each capability
let common_base = read_bar(0, device, 0, common_bar);
let notify_base = read_bar(0, device, 0, notify_bar);
let isr_base = if found_isr {
read_bar(0, device, 0, isr_bar)
} else {
0
};
let device_base = if found_device {
read_bar(0, device, 0, device_bar)
} else {
0
};
let common_cfg_addr = common_base + common_offset as u64;
let notify_cfg_addr = notify_base + notify_offset as u64;
let isr_cfg_addr = isr_base + isr_offset as u64;
let device_cfg_addr = device_base + device_offset as u64;
screen.put_str_at(
9,
*log_y,
&alloc::format!(" common_cfg: {:#x}", common_cfg_addr),
EFI_CYAN,
EFI_BLACK,
);
*log_y += 1;
screen.put_str_at(
9,
*log_y,
&alloc::format!(" notify_cfg: {:#x}", notify_cfg_addr),
EFI_CYAN,
EFI_BLACK,
);
*log_y += 1;
// Return PCI Modern result
return NicProbeResult::pci_modern(
common_cfg_addr,
notify_cfg_addr,
isr_cfg_addr,
device_cfg_addr,
notify_off_multiplier,
0, // bus
device, // device
0, // function
);
}
}
// Fallback: Check if I/O BAR (bit 0 = 1) or Memory BAR (bit 0 = 0)
if bar0 & 1 == 1 {
// I/O BAR - mask off type bit (Legacy device)
let io_base = (bar0 & 0xFFFFFFFC) as u64;
screen.put_str_at(
9,
*log_y,
&alloc::format!(" I/O base: {:#x} (Legacy)", io_base),
EFI_CYAN,
EFI_BLACK,
);
*log_y += 1;
// PCI Legacy (I/O ports) - use transport type 2
let mut result = NicProbeResult::mmio(io_base, 0, device, 0);
result.transport_type = 2; // TRANSPORT_PCI_LEGACY
return result;
} else {
// Memory BAR - mask off type bits (MMIO transport)
let mmio_base = (bar0 & 0xFFFFFFF0) as u64;
// For 64-bit BAR, read upper 32 bits
let final_base = if (bar0 >> 1) & 3 == 2 {
let bar1 = pci_read32(0, device, 0, 0x14);
mmio_base | ((bar1 as u64) << 32)
} else {
mmio_base
};
screen.put_str_at(
9,
*log_y,
&alloc::format!(" MMIO base: {:#x}", final_base),
EFI_CYAN,
EFI_BLACK,
);
*log_y += 1;
return NicProbeResult::mmio(final_base, 0, device, 0);
}
}
}
screen.put_str_at(
7,
*log_y,
"No VirtIO-net device found on bus 0",
EFI_RED,
EFI_BLACK,
);
*log_y += 1;
NicProbeResult::zeroed() // Not found
}
/// Probe for VirtIO-blk device via PCI config space.
/// Returns BlkProbeResult with device information.
/// Probe for VirtIO-blk device via PCI config space.
/// Returns BlkProbeResult with device information.
fn probe_virtio_blk_with_debug(screen: &mut Screen, log_y: &mut usize) -> BlkProbeResult {
// VirtIO vendor ID: 0x1AF4
// VirtIO-blk device IDs: 0x1001 (transitional), 0x1042 (modern)
const VIRTIO_VENDOR: u16 = 0x1AF4;
const VIRTIO_BLK_LEGACY: u16 = 0x1001;
const VIRTIO_BLK_MODERN: u16 = 0x1042;
// PCI config space access constants
const PCI_CONFIG_ADDR: u16 = 0xCF8;
const PCI_CONFIG_DATA: u16 = 0xCFC;
const PCI_STATUS_REG: u8 = 0x06;
const PCI_CAP_PTR: u8 = 0x34;
const PCI_CAP_ID_VNDR: u8 = 0x09;
// VirtIO capability types
const VIRTIO_PCI_CAP_COMMON: u8 = 1;
const VIRTIO_PCI_CAP_NOTIFY: u8 = 2;
const VIRTIO_PCI_CAP_ISR: u8 = 3;
const VIRTIO_PCI_CAP_DEVICE: u8 = 4;
fn pci_read32(bus: u8, device: u8, func: u8, offset: u8) -> u32 {
let addr: u32 = (1 << 31)
| ((bus as u32) << 16)
| ((device as u32) << 11)
| ((func as u32) << 8)
| ((offset as u32) & 0xFC);
unsafe {
core::arch::asm!(
"out dx, eax",
in("dx") PCI_CONFIG_ADDR,
in("eax") addr,
options(nomem, nostack)
);
let value: u32;
core::arch::asm!(
"in eax, dx",
in("dx") PCI_CONFIG_DATA,
out("eax") value,
options(nomem, nostack)
);
value
}
}
fn pci_read16(bus: u8, device: u8, func: u8, offset: u8) -> u16 {
let dword = pci_read32(bus, device, func, offset & 0xFC);
((dword >> ((offset & 2) * 8)) & 0xFFFF) as u16
}
fn pci_read8(bus: u8, device: u8, func: u8, offset: u8) -> u8 {
let dword = pci_read32(bus, device, func, offset & 0xFC);
((dword >> ((offset & 3) * 8)) & 0xFF) as u8
}
fn read_bar(bus: u8, device: u8, func: u8, bar_index: u8) -> u64 {
let bar_offset = 0x10 + bar_index * 4;
let bar_val = pci_read32(bus, device, func, bar_offset);
if bar_val & 1 == 0 {
let base = (bar_val & 0xFFFFFFF0) as u64;
if (bar_val >> 1) & 3 == 2 {
let bar_hi = pci_read32(bus, device, func, bar_offset + 4);
base | ((bar_hi as u64) << 32)
} else {
base
}
} else {
(bar_val & 0xFFFFFFFC) as u64
}
}
// Scan PCI bus 0 for VirtIO-blk
for device in 0..32u8 {
let id = pci_read32(0, device, 0, 0);
if id == 0xFFFFFFFF || id == 0 {
continue;
}
let vendor = (id & 0xFFFF) as u16;
let dev_id = ((id >> 16) & 0xFFFF) as u16;
// Check for VirtIO block device
if vendor == VIRTIO_VENDOR && (dev_id == VIRTIO_BLK_LEGACY || dev_id == VIRTIO_BLK_MODERN) {
let is_modern = dev_id == VIRTIO_BLK_MODERN;
screen.put_str_at(
9,
*log_y,
&alloc::format!(
"PCI 0:{:02}:0 - VirtIO-blk ({})",
device,
if is_modern { "Modern" } else { "Legacy" }
),
EFI_LIGHTGREEN,
EFI_BLACK,
);
*log_y += 1;
// Check for PCI capabilities (required for Modern)
let status = pci_read16(0, device, 0, PCI_STATUS_REG);
let has_caps = (status & 0x10) != 0;
if is_modern && has_caps {
// PCI Modern: Parse capability chain to find common_cfg, notify, isr, device
let mut common_bar: u8 = 0;
let mut common_offset: u32 = 0;
let mut notify_bar: u8 = 0;
let mut notify_offset: u32 = 0;
let mut notify_off_multiplier: u32 = 0;
let mut isr_bar: u8 = 0;
let mut isr_offset: u32 = 0;
let mut device_bar: u8 = 0;
let mut device_offset: u32 = 0;
let mut found_common = false;
let mut found_notify = false;
let mut found_isr = false;
let mut found_device = false;
let mut cap_offset = pci_read8(0, device, 0, PCI_CAP_PTR) & 0xFC;
while cap_offset != 0 && cap_offset < 0xFF {
let cap_id = pci_read8(0, device, 0, cap_offset);
let next = pci_read8(0, device, 0, cap_offset + 1);
if cap_id == PCI_CAP_ID_VNDR {
let cfg_type = pci_read8(0, device, 0, cap_offset + 3);
let bar = pci_read8(0, device, 0, cap_offset + 4);
let offset = pci_read32(0, device, 0, cap_offset + 8);
match cfg_type {
VIRTIO_PCI_CAP_COMMON => {
found_common = true;
common_bar = bar;
common_offset = offset;
}
VIRTIO_PCI_CAP_NOTIFY => {
found_notify = true;
notify_bar = bar;
notify_offset = offset;
notify_off_multiplier = pci_read32(0, device, 0, cap_offset + 16);
}
VIRTIO_PCI_CAP_ISR => {
found_isr = true;
isr_bar = bar;
isr_offset = offset;
}
VIRTIO_PCI_CAP_DEVICE => {
found_device = true;
device_bar = bar;
device_offset = offset;
}
_ => {}
}
}
cap_offset = next & 0xFC;
}
if found_common && found_notify {
let common_base = read_bar(0, device, 0, common_bar);
let notify_base = read_bar(0, device, 0, notify_bar);
let common_cfg_addr = common_base + common_offset as u64;
let notify_cfg_addr = notify_base + notify_offset as u64;
// Get ISR and device cfg addresses if found
let isr_cfg_addr = if found_isr {
read_bar(0, device, 0, isr_bar) + isr_offset as u64
} else {
0
};
let device_cfg_addr = if found_device {
read_bar(0, device, 0, device_bar) + device_offset as u64
} else {
0
};
screen.put_str_at(
9,
*log_y,
&alloc::format!(" common_cfg: {:#x}", common_cfg_addr),
EFI_CYAN,
EFI_BLACK,
);
*log_y += 1;
screen.put_str_at(
9,
*log_y,
&alloc::format!(" notify_cfg: {:#x}", notify_cfg_addr),
EFI_CYAN,
EFI_BLACK,
);
*log_y += 1;
// Return PCI Modern result
return BlkProbeResult::pci_modern(
common_cfg_addr,
notify_cfg_addr,
isr_cfg_addr,
device_cfg_addr,
notify_off_multiplier,
0, // bus
device, // device
0, // function
);
}
}
// Fallback to Legacy BAR0
let bar0 = pci_read32(0, device, 0, 0x10);
let mmio_base = if bar0 & 1 == 0 {
let base = (bar0 & 0xFFFFFFF0) as u64;
if (bar0 >> 1) & 3 == 2 {
let bar1 = pci_read32(0, device, 0, 0x14);
base | ((bar1 as u64) << 32)
} else {
base
}
} else {
// I/O BAR - not supported for block
screen.put_str_at(9, *log_y, " I/O BAR not supported", EFI_RED, EFI_BLACK);
*log_y += 1;
continue;
};
screen.put_str_at(
9,
*log_y,
&alloc::format!(" MMIO base: {:#x}", mmio_base),
EFI_CYAN,
EFI_BLACK,
);
*log_y += 1;
return BlkProbeResult::virtio(mmio_base, 0, device, 0);
}
}
BlkProbeResult::zeroed() // Not found
}
/// Leak a string so it becomes 'static.
/// Safe to use since we're about to exit boot services anyway.
fn leak_string(s: &str) -> &'static str {
let boxed = alloc::boxed::Box::new(alloc::string::String::from(s));
alloc::boxed::Box::leak(boxed).as_str()
}
// ═══════════════════════════════════════════════════════════════════════
// UEFI HELPERS
// ═══════════════════════════════════════════════════════════════════════
const EFI_LOADED_IMAGE_PROTOCOL_GUID: [u8; 16] = [
0xa1, 0x31, 0x1b, 0x5b, 0x62, 0x95, 0xd2, 0x11, 0x8e, 0x3f, 0x00, 0xa0, 0xc9, 0x69, 0x72, 0x3b,
];
const EFI_DEVICE_PATH_PROTOCOL_GUID: [u8; 16] = [
0x91, 0x6e, 0x57, 0x09, 0x3f, 0x6d, 0xd2, 0x11, 0x8e, 0x39, 0x00, 0xa0, 0xc9, 0x69, 0x72, 0x3b,
];
#[repr(C)]
struct LoadedImageProtocol {
revision: u32,
parent_handle: *mut c_void,
system_table: *mut c_void,
device_handle: *mut c_void,
// Other fields omitted
}
#[repr(C)]
struct DevicePathHeader {
type_: u8,
sub_type: u8,
length: [u8; 2],
}
/// Find ESP start LBA by querying LoadedImage -> DeviceHandle -> DevicePath
unsafe fn find_esp_lba(bs: &crate::BootServices, image_handle: *mut ()) -> Option<u64> {
// 1. Get LoadedImageProtocol
let mut loaded_image_ptr: *mut c_void = ptr::null_mut();
let status = (bs.handle_protocol)(
image_handle,
&EFI_LOADED_IMAGE_PROTOCOL_GUID,
&mut loaded_image_ptr as *mut *mut c_void as *mut *mut (),
);
if status != 0 {
return None;
}
let loaded_image = &*(loaded_image_ptr as *const LoadedImageProtocol);
// 2. Get DevicePathProtocol for the device handle
let mut device_path_ptr: *mut c_void = ptr::null_mut();
let status = (bs.handle_protocol)(
loaded_image.device_handle as *mut _,
&EFI_DEVICE_PATH_PROTOCOL_GUID,
&mut device_path_ptr as *mut *mut c_void as *mut *mut (),
);
if status != 0 {
return None;
}
// 3. Iterate device path nodes
let mut current_ptr = device_path_ptr as *const DevicePathHeader;
loop {
let header = &*current_ptr;
let type_ = header.type_;
let sub_type = header.sub_type;
let len = u16::from_le_bytes(header.length);
if type_ == 0x7F && sub_type == 0xFF {
// End of path
break;
}
if type_ == 0x04 && sub_type == 0x01 {
// Media / HardDrive
// Found it! Structure is:
// Header (4)
// PartitionNumber (4)
// PartitionStart (8)
// ...
let ptr = current_ptr as *const u8;
let start_ptr = ptr.add(8) as *const u64;
return Some(start_ptr.read_unaligned());
}
current_ptr = (current_ptr as *const u8).add(len as usize) as *const DevicePathHeader;
}
None
}