morpheus_network/device/pci.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
//! PCI bus enumeration and device discovery.
//!
//! This module provides utilities for scanning the PCI bus to find VirtIO
//! and other network devices. Supports both:
//!
//! - **ECAM (Enhanced Configuration Access Mechanism)** - Modern PCIe
//! - **Legacy I/O ports** - Older PCI (0xCF8/0xCFC)
//!
//! # Usage
//!
//! ```ignore
//! use morpheus_network::device::pci::{PciScanner, EcamAccess};
//!
//! // For QEMU with PCIe ECAM at 0xB000_0000
//! let ecam = unsafe { EcamAccess::new(0xB000_0000 as *mut u8) };
//! let scanner = PciScanner::new(ecam);
//!
//! for device in scanner.scan_bus(0) {
//! if device.is_virtio_net() {
//! // Found VirtIO network device!
//! }
//! }
//! ```
extern crate alloc;
use alloc::vec::Vec;
/// PCI vendor ID for VirtIO devices.
pub const VIRTIO_VENDOR_ID: u16 = 0x1AF4;
/// VirtIO device ID range for transitional devices.
pub const VIRTIO_DEVICE_ID_BASE: u16 = 0x1000;
/// VirtIO device ID for modern network device.
pub const VIRTIO_NET_DEVICE_ID: u16 = 0x1041;
/// PCI configuration space size for a single function.
pub const PCI_CONFIG_SIZE: usize = 256;
/// PCIe extended configuration space size.
pub const PCIE_CONFIG_SIZE: usize = 4096;
/// PCI device/function identifier.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct DeviceFunction {
/// Bus number (0-255).
pub bus: u8,
/// Device number (0-31).
pub device: u8,
/// Function number (0-7).
pub function: u8,
}
impl DeviceFunction {
/// Create a new device/function identifier.
pub const fn new(bus: u8, device: u8, function: u8) -> Self {
Self {
bus,
device,
function,
}
}
/// Calculate ECAM offset for this device.
pub const fn ecam_offset(&self) -> usize {
((self.bus as usize) << 20)
| ((self.device as usize) << 15)
| ((self.function as usize) << 12)
}
}
/// PCI device information from configuration space.
#[derive(Debug, Clone, Copy)]
pub struct PciDeviceInfo {
/// Device location.
pub location: DeviceFunction,
/// Vendor ID.
pub vendor_id: u16,
/// Device ID.
pub device_id: u16,
/// Class code.
pub class: u8,
/// Subclass code.
pub subclass: u8,
/// Programming interface.
pub prog_if: u8,
/// Revision ID.
pub revision: u8,
/// Header type (0 = standard, 1 = bridge, 2 = cardbus).
pub header_type: u8,
/// Multi-function device flag.
pub multifunction: bool,
}
impl PciDeviceInfo {
/// Check if this is a VirtIO device.
pub fn is_virtio(&self) -> bool {
self.vendor_id == VIRTIO_VENDOR_ID
}
/// Check if this is a VirtIO network device.
/// Supports both transitional (0x1000) and modern (0x1041) device IDs,
/// as well as class-based detection (class 0x02 = network).
pub fn is_virtio_net(&self) -> bool {
if !self.is_virtio() {
return false;
}
// Modern VirtIO network device
if self.device_id == VIRTIO_NET_DEVICE_ID {
return true;
}
// Transitional VirtIO network (device ID 0x1000, type = device_id - 0x1000 = 0 = reserved,
// but QEMU uses 0x1000 for net). Also check 0x1001 just in case.
if self.device_id == VIRTIO_DEVICE_ID_BASE || self.device_id == VIRTIO_DEVICE_ID_BASE + 1 {
// For transitional devices, also verify it's a network class
return self.class == 0x02;
}
// Fallback: any VirtIO device with network class
self.class == 0x02
}
/// Check if this is a network device (class 0x02).
pub fn is_network(&self) -> bool {
self.class == 0x02
}
/// Get VirtIO device type (for transitional devices).
pub fn virtio_device_type(&self) -> Option<u8> {
if !self.is_virtio() {
return None;
}
if self.device_id >= VIRTIO_DEVICE_ID_BASE && self.device_id <= VIRTIO_DEVICE_ID_BASE + 0x3F
{
// Transitional device: type = device_id - 0x1000
Some((self.device_id - VIRTIO_DEVICE_ID_BASE) as u8)
} else if self.device_id >= 0x1040 && self.device_id <= 0x107F {
// Modern device: type = device_id - 0x1040
Some((self.device_id - 0x1040) as u8)
} else {
None
}
}
}
/// Trait for PCI configuration space access.
pub trait ConfigAccess {
/// Read a 32-bit value from configuration space.
///
/// # Safety
///
/// The offset must be valid and aligned to 4 bytes.
unsafe fn read32(&self, device: DeviceFunction, offset: u8) -> u32;
/// Write a 32-bit value to configuration space.
///
/// # Safety
///
/// The offset must be valid and aligned to 4 bytes.
unsafe fn write32(&self, device: DeviceFunction, offset: u8, value: u32);
/// Read a 16-bit value from configuration space.
unsafe fn read16(&self, device: DeviceFunction, offset: u8) -> u16 {
let val32 = unsafe { self.read32(device, offset & !0x3) };
let shift = ((offset & 0x2) * 8) as usize;
((val32 >> shift) & 0xFFFF) as u16
}
/// Read an 8-bit value from configuration space.
unsafe fn read8(&self, device: DeviceFunction, offset: u8) -> u8 {
let val32 = unsafe { self.read32(device, offset & !0x3) };
let shift = ((offset & 0x3) * 8) as usize;
((val32 >> shift) & 0xFF) as u8
}
}
/// ECAM (PCIe Enhanced Configuration Access Mechanism) implementation.
pub struct EcamAccess {
/// Base address of ECAM region.
base: *mut u8,
}
impl EcamAccess {
/// Create a new ECAM accessor.
///
/// # Safety
///
/// - `base` must be a valid pointer to the ECAM memory region.
/// - The region must be at least 256MB (for full bus range).
pub unsafe fn new(base: *mut u8) -> Self {
Self { base }
}
/// Get the base address.
pub fn base(&self) -> *mut u8 {
self.base
}
}
impl ConfigAccess for EcamAccess {
unsafe fn read32(&self, device: DeviceFunction, offset: u8) -> u32 {
let addr = self.base.add(device.ecam_offset() + (offset as usize));
// SAFETY: Caller guarantees valid ECAM region
unsafe { core::ptr::read_volatile(addr as *const u32) }
}
unsafe fn write32(&self, device: DeviceFunction, offset: u8, value: u32) {
let addr = self.base.add(device.ecam_offset() + (offset as usize));
// SAFETY: Caller guarantees valid ECAM region
unsafe { core::ptr::write_volatile(addr as *mut u32, value) }
}
}
// SAFETY: ECAM access is thread-safe if properly synchronized externally
unsafe impl Send for EcamAccess {}
unsafe impl Sync for EcamAccess {}
// =============================================================================
// External assembly functions for PCI I/O (compiled from pci_io.S)
// Using standalone assembly avoids compiler optimization issues with inline asm
// =============================================================================
#[cfg(target_arch = "x86_64")]
extern "C" {
/// Read 32-bit value from PCI configuration space.
/// Args: bus, device, function, offset (must be 4-byte aligned)
fn pci_config_read32(bus: u64, device: u64, function: u64, offset: u64) -> u32;
/// Write 32-bit value to PCI configuration space.
/// Args: bus, device, function, offset, value
fn pci_config_write32(bus: u64, device: u64, function: u64, offset: u64, value: u32);
/// Test if PCI I/O ports are accessible.
/// Returns the value read back from 0xCF8 (should have bit 31 set).
pub fn pci_io_test() -> u32;
/// Read CPU timestamp counter.
/// Returns 64-bit TSC value.
pub fn read_tsc() -> u64;
}
/// Delay for approximately the given number of microseconds using TSC.
/// Assumes ~2.5 GHz CPU (adjust TSC_MHZ for your platform).
#[cfg(target_arch = "x86_64")]
pub fn tsc_delay_us(us: u32) {
const TSC_MHZ: u64 = 2500; // Assume ~2.5 GHz CPU
let cycles = (us as u64) * TSC_MHZ;
let start = unsafe { read_tsc() };
while unsafe { read_tsc() }.wrapping_sub(start) < cycles {
core::hint::spin_loop();
}
}
/// Delay (non-x86 stub - no-op for now)
#[cfg(not(target_arch = "x86_64"))]
pub fn tsc_delay_us(_us: u32) {
// No-op on non-x86 platforms
}
/// Legacy I/O port PCI configuration access (0xCF8/0xCFC).
///
/// Uses standalone assembly (pci_io.S) for reliable I/O port access
/// without compiler optimization interference.
#[cfg(target_arch = "x86_64")]
pub struct LegacyIoAccess;
#[cfg(target_arch = "x86_64")]
impl LegacyIoAccess {
/// Create a new legacy I/O accessor.
pub fn new() -> Self {
Self
}
/// Test if PCI I/O ports are working.
/// Returns true if the enable bit (bit 31) is readable after write.
pub fn test_io_ports() -> bool {
let result = unsafe { pci_io_test() };
(result & 0x8000_0000) != 0
}
}
#[cfg(target_arch = "x86_64")]
impl Default for LegacyIoAccess {
fn default() -> Self {
Self::new()
}
}
#[cfg(target_arch = "x86_64")]
impl ConfigAccess for LegacyIoAccess {
unsafe fn read32(&self, device: DeviceFunction, offset: u8) -> u32 {
// Use standalone assembly for reliable I/O port access
// The external function handles all the port I/O atomically
// without any compiler interference
pci_config_read32(
device.bus as u64,
device.device as u64,
device.function as u64,
offset as u64,
)
}
unsafe fn write32(&self, device: DeviceFunction, offset: u8, value: u32) {
// Use standalone assembly for reliable I/O port access
pci_config_write32(
device.bus as u64,
device.device as u64,
device.function as u64,
offset as u64,
value,
)
}
}
/// PCI bus scanner.
pub struct PciScanner<A: ConfigAccess> {
access: A,
}
impl<A: ConfigAccess> PciScanner<A> {
/// Create a new PCI scanner with the given configuration access method.
pub fn new(access: A) -> Self {
Self { access }
}
/// Get a reference to the configuration access method.
pub fn access(&self) -> &A {
&self.access
}
/// Probe a single device/function.
///
/// Returns `Some(info)` if a device is present, `None` otherwise.
pub fn probe(&self, location: DeviceFunction) -> Option<PciDeviceInfo> {
// Read vendor/device ID
let id = unsafe { self.access.read32(location, 0x00) };
let vendor_id = (id & 0xFFFF) as u16;
let device_id = ((id >> 16) & 0xFFFF) as u16;
// 0xFFFF = no device present
if vendor_id == 0xFFFF {
return None;
}
// Read class/revision
let class_rev = unsafe { self.access.read32(location, 0x08) };
let revision = (class_rev & 0xFF) as u8;
let prog_if = ((class_rev >> 8) & 0xFF) as u8;
let subclass = ((class_rev >> 16) & 0xFF) as u8;
let class = ((class_rev >> 24) & 0xFF) as u8;
// Read header type
let header = unsafe { self.access.read32(location, 0x0C) };
let header_type = ((header >> 16) & 0x7F) as u8;
let multifunction = (header >> 16) & 0x80 != 0;
Some(PciDeviceInfo {
location,
vendor_id,
device_id,
class,
subclass,
prog_if,
revision,
header_type,
multifunction,
})
}
/// Scan a single bus for devices.
pub fn scan_bus(&self, bus: u8) -> Vec<PciDeviceInfo> {
let mut devices = Vec::new();
for device in 0..32 {
// Check function 0 first
let location = DeviceFunction::new(bus, device, 0);
if let Some(info) = self.probe(location) {
devices.push(info);
// If multifunction, check other functions
if info.multifunction {
for function in 1..8 {
let loc = DeviceFunction::new(bus, device, function);
if let Some(func_info) = self.probe(loc) {
devices.push(func_info);
}
}
}
}
}
devices
}
/// Scan all buses for devices (simple linear scan).
pub fn scan_all(&self) -> Vec<PciDeviceInfo> {
let mut devices = Vec::new();
// Simple: scan buses 0-255
// More sophisticated implementations would follow bridge topology
for bus in 0..=255u8 {
devices.extend(self.scan_bus(bus));
}
devices
}
/// Find all VirtIO network devices.
pub fn find_virtio_net(&self) -> Vec<PciDeviceInfo> {
self.scan_bus(0)
.into_iter()
.filter(|d| d.is_virtio_net())
.collect()
}
/// Find all network devices (any vendor).
pub fn find_network(&self) -> Vec<PciDeviceInfo> {
self.scan_bus(0)
.into_iter()
.filter(|d| d.is_network())
.collect()
}
}
/// Common ECAM base addresses for different platforms.
pub mod ecam_bases {
/// QEMU Q35 machine type (also used by OVMF).
pub const QEMU_Q35: usize = 0xB000_0000;
/// QEMU i440FX machine type (legacy).
pub const QEMU_I440FX: usize = 0xE000_0000;
/// Intel platform (typical).
pub const INTEL_TYPICAL: usize = 0xE000_0000;
}
/// Diagnostic utilities for PCI debugging.
#[cfg(target_arch = "x86_64")]
pub mod diagnostics {
use super::*;
/// Test I/O port access using standalone assembly.
/// Returns (cf8_readback, host_bridge_id).
pub fn raw_io_test() -> (u32, u32) {
// Use our external assembly test function
let cf8_readback = unsafe { pci_io_test() };
// Also read host bridge
let legacy = LegacyIoAccess::new();
let host_id = unsafe { legacy.read32(DeviceFunction::new(0, 0, 0), 0x00) };
(cf8_readback, host_id)
}
/// Read the host bridge (bus 0, dev 0, func 0) vendor/device ID.
/// This should ALWAYS return a valid device (the host bridge) if PCI works.
/// Returns (vendor_id, device_id).
pub fn read_host_bridge() -> (u16, u16) {
let legacy = LegacyIoAccess::new();
let df = DeviceFunction::new(0, 0, 0);
let id = unsafe { legacy.read32(df, 0x00) };
let vendor = (id & 0xFFFF) as u16;
let device = ((id >> 16) & 0xFFFF) as u16;
(vendor, device)
}
/// Scan ALL device slots on bus 0 to find VirtIO devices.
/// Returns raw vendor/device values (0xFFFF = no device).
pub fn probe_all_bus0_slots() -> Vec<(DeviceFunction, u16, u16)> {
let legacy = LegacyIoAccess::new();
let mut results = Vec::new();
// Scan ALL 32 device slots on bus 0
for slot in 0..32u8 {
let loc = DeviceFunction::new(0, slot, 0);
let id = unsafe { legacy.read32(loc, 0x00) };
let vendor = (id & 0xFFFF) as u16;
let device = ((id >> 16) & 0xFFFF) as u16;
// Only add if device present (not 0xFFFF)
if vendor != 0xFFFF {
results.push((loc, vendor, device));
}
}
results
}
/// Scan specific device locations where QEMU typically places VirtIO.
/// Returns raw vendor/device values (0xFFFF = no device).
pub fn probe_common_virtio_locations() -> Vec<(DeviceFunction, u16, u16)> {
// Just use the full scan now
probe_all_bus0_slots()
}
/// Full diagnostic: returns structured info about PCI state.
pub struct PciDiagnostic {
/// Whether 0xCF8 read-back matches what we wrote
pub io_port_works: bool,
/// Raw value read back from 0xCF8
pub cf8_readback: u32,
/// Host bridge vendor ID (should be 0x8086 for Intel/QEMU)
pub host_bridge_vendor: u16,
/// Host bridge device ID
pub host_bridge_device: u16,
/// All devices found on bus 0
pub bus0_device_count: usize,
/// Devices at common VirtIO locations
pub virtio_locations: Vec<(DeviceFunction, u16, u16)>,
}
/// Run full PCI diagnostics.
pub fn run_diagnostics() -> PciDiagnostic {
let (cf8_readback, _data) = raw_io_test();
// Check if readback has enable bit set (bit 31)
let io_port_works = (cf8_readback & 0x8000_0000) != 0;
let (host_vendor, host_device) = read_host_bridge();
let legacy = LegacyIoAccess::new();
let scanner = PciScanner::new(legacy);
let bus0_devices = scanner.scan_bus(0);
let virtio_locs = probe_common_virtio_locations();
PciDiagnostic {
io_port_works,
cf8_readback,
host_bridge_vendor: host_vendor,
host_bridge_device: host_device,
bus0_device_count: bus0_devices.len(),
virtio_locations: virtio_locs,
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_device_function_ecam_offset() {
let df = DeviceFunction::new(0, 0, 0);
assert_eq!(df.ecam_offset(), 0);
let df = DeviceFunction::new(0, 1, 0);
assert_eq!(df.ecam_offset(), 1 << 15);
let df = DeviceFunction::new(0, 0, 1);
assert_eq!(df.ecam_offset(), 1 << 12);
let df = DeviceFunction::new(1, 0, 0);
assert_eq!(df.ecam_offset(), 1 << 20);
// Bus 0, Device 3, Function 0 (typical QEMU virtio-net location)
let df = DeviceFunction::new(0, 3, 0);
assert_eq!(df.ecam_offset(), 3 << 15);
}
#[test]
fn test_pci_device_info_virtio_detection() {
let info = PciDeviceInfo {
location: DeviceFunction::new(0, 3, 0),
vendor_id: VIRTIO_VENDOR_ID,
device_id: 0x1001, // Transitional net (type 1 = network)
class: 0x02,
subclass: 0x00,
prog_if: 0x00,
revision: 0x00,
header_type: 0x00,
multifunction: false,
};
assert!(info.is_virtio());
assert!(info.is_virtio_net());
assert!(info.is_network());
assert_eq!(info.virtio_device_type(), Some(1)); // Network
}
#[test]
fn test_virtio_device_type() {
let mut info = PciDeviceInfo {
location: DeviceFunction::new(0, 0, 0),
vendor_id: VIRTIO_VENDOR_ID,
device_id: 0x1001, // Net transitional
class: 0x02,
subclass: 0x00,
prog_if: 0x00,
revision: 0x00,
header_type: 0x00,
multifunction: false,
};
assert_eq!(info.virtio_device_type(), Some(1)); // Network
info.device_id = 0x1002; // Block transitional
assert_eq!(info.virtio_device_type(), Some(2)); // Block
info.device_id = 0x1041; // Net modern
assert_eq!(info.virtio_device_type(), Some(1)); // Network
}
#[test]
fn test_non_virtio_device() {
let info = PciDeviceInfo {
location: DeviceFunction::new(0, 0, 0),
vendor_id: 0x8086, // Intel
device_id: 0x100E, // e1000
class: 0x02,
subclass: 0x00,
prog_if: 0x00,
revision: 0x00,
header_type: 0x00,
multifunction: false,
};
assert!(!info.is_virtio());
assert!(!info.is_virtio_net());
assert!(info.is_network());
assert_eq!(info.virtio_device_type(), None);
}
#[test]
fn test_ecam_bases() {
assert_eq!(ecam_bases::QEMU_Q35, 0xB000_0000);
assert_eq!(ecam_bases::QEMU_I440FX, 0xE000_0000);
}
// Mock ConfigAccess for testing scanner
struct MockAccess {
devices: Vec<(DeviceFunction, u32, u32, u32)>, // (location, id, class_rev, header)
}
impl MockAccess {
fn new() -> Self {
Self {
devices: Vec::new(),
}
}
fn add_device(&mut self, loc: DeviceFunction, vendor: u16, device: u16, class: u8) {
let id = (vendor as u32) | ((device as u32) << 16);
let class_rev = (class as u32) << 24;
let header = 0u32; // Single function
self.devices.push((loc, id, class_rev, header));
}
}
impl ConfigAccess for MockAccess {
unsafe fn read32(&self, device: DeviceFunction, offset: u8) -> u32 {
for (loc, id, class_rev, header) in &self.devices {
if *loc == device {
return match offset {
0x00 => *id,
0x08 => *class_rev,
0x0C => *header,
_ => 0,
};
}
}
0xFFFF_FFFF // No device
}
unsafe fn write32(&self, _device: DeviceFunction, _offset: u8, _value: u32) {
// No-op for mock
}
}
#[test]
fn test_scanner_empty_bus() {
let access = MockAccess::new();
let scanner = PciScanner::new(access);
let devices = scanner.scan_bus(0);
assert!(devices.is_empty());
}
#[test]
fn test_scanner_finds_virtio() {
let mut access = MockAccess::new();
access.add_device(DeviceFunction::new(0, 3, 0), VIRTIO_VENDOR_ID, 0x1001, 0x02);
let scanner = PciScanner::new(access);
let virtio = scanner.find_virtio_net();
assert_eq!(virtio.len(), 1);
assert_eq!(virtio[0].location.device, 3);
}
#[test]
fn test_scanner_multiple_devices() {
let mut access = MockAccess::new();
access.add_device(
DeviceFunction::new(0, 1, 0),
0x8086,
0x100E,
0x02, // Intel e1000
);
access.add_device(
DeviceFunction::new(0, 3, 0),
VIRTIO_VENDOR_ID,
0x1001,
0x02, // VirtIO net
);
let scanner = PciScanner::new(access);
let all_net = scanner.find_network();
assert_eq!(all_net.len(), 2);
// Re-scan for just virtio (need new scanner due to move)
let mut access2 = MockAccess::new();
access2.add_device(DeviceFunction::new(0, 1, 0), 0x8086, 0x100E, 0x02);
access2.add_device(DeviceFunction::new(0, 3, 0), VIRTIO_VENDOR_ID, 0x1001, 0x02);
let scanner2 = PciScanner::new(access2);
let virtio = scanner2.find_virtio_net();
assert_eq!(virtio.len(), 1);
}
}