morpheus_network/transfer/disk/
manifest.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
//! Manifest writer for post-EBS.
//!
//! Binary manifest format for tracking ISO chunks.
//! Written to ESP for bootloader to locate ISO data.

#[cfg(feature = "fat32_manifest")]
extern crate alloc;

use gpt_disk_io::BlockIo;
use gpt_disk_types::Lba;

use super::types::{
    ChunkSet, DiskError, DiskResult, MAX_CHUNK_PARTITIONS, MAX_ISO_NAME_LEN, SECTOR_SIZE,
};

/// Manifest magic: "MXISO\x01\x00\x00" (v1 - compatible with morpheus_core)
pub const MANIFEST_MAGIC: [u8; 8] = [b'M', b'X', b'I', b'S', b'O', 0x01, 0x00, 0x00];

/// Manifest header size
pub const MANIFEST_HEADER_SIZE: usize = 128;

/// Chunk entry size  
pub const CHUNK_ENTRY_SIZE: usize = 48;

/// Maximum manifest size (header + 16 chunks)
pub const MAX_MANIFEST_SIZE: usize =
    MANIFEST_HEADER_SIZE + (MAX_CHUNK_PARTITIONS * CHUNK_ENTRY_SIZE);

/// Manifest flags
pub mod flags {
    pub const COMPLETE: u8 = 0x01;
    pub const VERIFIED: u8 = 0x02;
}

/// Binary manifest for ISO chunks
///
/// Format:
/// ```text
/// Offset  Size  Field
/// 0x00    8     Magic "MXISO\x02\x00\x00"
/// 0x08    64    ISO name (null-terminated)
/// 0x48    8     Total size (u64 LE)
/// 0x50    32    SHA256 hash (or zeros)
/// 0x70    1     Number of chunks
/// 0x71    1     Flags
/// 0x72    2     Reserved
/// 0x74    4     Header CRC32
/// 0x78    8     Reserved
/// 0x80    N*48  Chunk entries
/// ```
pub struct ManifestWriter {
    /// ISO name
    name: [u8; MAX_ISO_NAME_LEN],
    /// Name length
    name_len: usize,
    /// Total ISO size
    total_size: u64,
    /// SHA256 hash
    sha256: [u8; 32],
    /// Flags
    flags: u8,
}

impl ManifestWriter {
    /// Create new manifest writer
    pub fn new(iso_name: &str, total_size: u64) -> Self {
        let mut name = [0u8; MAX_ISO_NAME_LEN];
        let len = iso_name.as_bytes().len().min(MAX_ISO_NAME_LEN - 1);
        name[..len].copy_from_slice(&iso_name.as_bytes()[..len]);

        Self {
            name,
            name_len: len,
            total_size,
            sha256: [0u8; 32],
            flags: 0,
        }
    }

    /// Set SHA256 hash
    pub fn set_hash(&mut self, hash: &[u8; 32]) {
        self.sha256.copy_from_slice(hash);
    }

    /// Mark as complete
    pub fn set_complete(&mut self, complete: bool) {
        if complete {
            self.flags |= flags::COMPLETE;
        } else {
            self.flags &= !flags::COMPLETE;
        }
    }

    /// Mark as verified
    pub fn set_verified(&mut self, verified: bool) {
        if verified {
            self.flags |= flags::VERIFIED;
        } else {
            self.flags &= !flags::VERIFIED;
        }
    }

    /// Serialize manifest to buffer
    ///
    /// Returns number of bytes written.
    pub fn serialize(&self, chunks: &ChunkSet, buffer: &mut [u8]) -> DiskResult<usize> {
        let needed = MANIFEST_HEADER_SIZE + (chunks.count * CHUNK_ENTRY_SIZE);
        if buffer.len() < needed {
            return Err(DiskError::BufferTooSmall);
        }

        buffer[..needed].fill(0);

        // Magic
        buffer[0..8].copy_from_slice(&MANIFEST_MAGIC);

        // Name
        buffer[8..8 + self.name_len].copy_from_slice(&self.name[..self.name_len]);

        // Total size
        buffer[0x48..0x50].copy_from_slice(&self.total_size.to_le_bytes());

        // SHA256
        buffer[0x50..0x70].copy_from_slice(&self.sha256);

        // Number of chunks
        buffer[0x70] = chunks.count as u8;

        // Flags
        buffer[0x71] = self.flags;

        // Chunk entries
        for i in 0..chunks.count {
            let chunk = &chunks.chunks[i];
            let offset = MANIFEST_HEADER_SIZE + (i * CHUNK_ENTRY_SIZE);

            // Partition UUID (use type GUID for now)
            buffer[offset..offset + 16].copy_from_slice(&chunk.info.type_guid);

            // Start LBA
            buffer[offset + 16..offset + 24].copy_from_slice(&chunk.info.start_lba.to_le_bytes());

            // End LBA
            buffer[offset + 24..offset + 32].copy_from_slice(&chunk.info.end_lba.to_le_bytes());

            // Data size
            buffer[offset + 32..offset + 40].copy_from_slice(&chunk.bytes_written.to_le_bytes());

            // Chunk index
            buffer[offset + 40] = chunk.chunk_index;

            // Flags (written bit)
            buffer[offset + 41] = if chunk.complete { 0x01 } else { 0x00 };
        }

        // Calculate and write header CRC32
        let header_crc = crc32(&buffer[0..0x74]);
        buffer[0x74..0x78].copy_from_slice(&header_crc.to_le_bytes());

        Ok(needed)
    }

    /// Write manifest to ESP partition
    ///
    /// Writes to `/.iso/<name>.manifest` conceptually,
    /// but since we can't do FAT32 file ops without alloc, we write
    /// to a fixed location within the ESP.
    ///
    /// # Arguments
    /// * `block_io` - Block I/O device
    /// * `esp_start_lba` - Start LBA of ESP partition
    /// * `manifest_offset` - Sector offset within ESP for manifest storage
    /// * `chunks` - Chunk information to write
    pub fn write_to_esp<B: BlockIo>(
        &self,
        block_io: &mut B,
        esp_start_lba: u64,
        manifest_offset: u64, // Sector offset within ESP
        chunks: &ChunkSet,
    ) -> DiskResult<()> {
        // Serialize to buffer (using 2 sectors = 1024 bytes max)
        let mut buffer = [0u8; SECTOR_SIZE * 2];
        let len = self.serialize(chunks, &mut buffer)?;

        // Write manifest sectors
        let manifest_lba = esp_start_lba + manifest_offset;
        let sectors_needed = (len + SECTOR_SIZE - 1) / SECTOR_SIZE;

        for i in 0..sectors_needed {
            let sector_data = &buffer[i * SECTOR_SIZE..(i + 1) * SECTOR_SIZE];
            block_io
                .write_blocks(Lba(manifest_lba + i as u64), sector_data)
                .map_err(|_| DiskError::IoError)?;
        }

        block_io.flush().map_err(|_| DiskError::IoError)?;

        Ok(())
    }

    /// Write manifest as FAT32 file to ESP
    ///
    /// Writes to `/.iso/<short_name>.mfst` on the ESP.
    /// Uses 8.3 compatible filenames for FAT32 compatibility.
    /// This is the preferred method as it integrates with the bootloader scanner.
    ///
    /// # Requirements
    /// - Heap allocator must be initialized (crate::alloc_heap::init_heap())
    /// - ESP must be a valid FAT32 partition
    ///
    /// # Arguments
    /// * `block_io` - Block I/O device
    /// * `esp_start_lba` - Start LBA of ESP partition
    /// * `chunks` - Chunk information to write
    #[cfg(feature = "fat32_manifest")]
    pub fn write_to_esp_fat32<B: BlockIo>(
        &self,
        block_io: &mut B,
        esp_start_lba: u64,
        chunks: &ChunkSet,
    ) -> DiskResult<()> {
        use alloc::format;
        use alloc::string::String;

        // Serialize manifest to buffer
        let mut buffer = [0u8; MAX_MANIFEST_SIZE];
        let len = self.serialize(chunks, &mut buffer)?;

        // Build 8.3 compatible filename from ISO name
        // e.g., "tails-amd64-7.3.1.iso" -> "TAILS731.MFS"
        let name_str = core::str::from_utf8(&self.name[..self.name_len]).unwrap_or("unknown");
        let short_name = make_8_3_filename(name_str);
        let path = format!("/.iso/{}", short_name);

        // Ensure .iso directory exists
        let _ = morpheus_core::fs::create_directory(block_io, esp_start_lba, "/.iso");

        // Write manifest file
        morpheus_core::fs::write_file(block_io, esp_start_lba, &path, &buffer[..len])
            .map_err(|_| DiskError::ManifestError)?;

        Ok(())
    }
}

/// Generate an 8.3 compatible filename for FAT32
/// Takes ISO name like "tails-amd64-7.3.1.iso" and returns "TAILS731.MFS"
fn make_8_3_filename(name: &str) -> alloc::string::String {
    use alloc::string::String;

    // Extract meaningful characters, uppercase, alphanumeric only
    let clean: String = name
        .chars()
        .filter(|c| c.is_alphanumeric())
        .take(8)
        .collect::<String>()
        .to_uppercase();

    // Ensure we have at least something
    let base = if clean.is_empty() { "MANIFEST" } else { &clean };

    // Use .MFS extension (short for manifest)
    alloc::format!("{}.MFS", base)
}

/// Manifest reader for loading existing manifests
pub struct ManifestReader;

impl ManifestReader {
    /// Read manifest from buffer
    ///
    /// Returns (name, total_size, chunks) if valid.
    pub fn parse(buffer: &[u8]) -> DiskResult<(IsoManifestInfo, ChunkSet)> {
        if buffer.len() < MANIFEST_HEADER_SIZE {
            return Err(DiskError::BufferTooSmall);
        }

        // Check magic
        if &buffer[0..8] != &MANIFEST_MAGIC {
            return Err(DiskError::ManifestError);
        }

        // Verify CRC32
        let stored_crc = u32::from_le_bytes(buffer[0x74..0x78].try_into().unwrap());
        let mut check_buf = [0u8; 0x74];
        check_buf.copy_from_slice(&buffer[0..0x74]);
        let calc_crc = crc32(&check_buf);
        if stored_crc != calc_crc {
            return Err(DiskError::ManifestError);
        }

        // Parse header
        let mut name = [0u8; MAX_ISO_NAME_LEN];
        name.copy_from_slice(&buffer[8..8 + MAX_ISO_NAME_LEN]);

        let total_size = u64::from_le_bytes(buffer[0x48..0x50].try_into().unwrap());

        let mut sha256 = [0u8; 32];
        sha256.copy_from_slice(&buffer[0x50..0x70]);

        let num_chunks = buffer[0x70] as usize;
        let flags = buffer[0x71];

        if num_chunks > MAX_CHUNK_PARTITIONS {
            return Err(DiskError::ManifestError);
        }

        // Parse chunks
        let mut chunks = ChunkSet::new();
        chunks.total_size = total_size;

        for i in 0..num_chunks {
            let offset = MANIFEST_HEADER_SIZE + (i * CHUNK_ENTRY_SIZE);
            if offset + CHUNK_ENTRY_SIZE > buffer.len() {
                return Err(DiskError::BufferTooSmall);
            }

            let mut type_guid = [0u8; 16];
            type_guid.copy_from_slice(&buffer[offset..offset + 16]);

            let start_lba =
                u64::from_le_bytes(buffer[offset + 16..offset + 24].try_into().unwrap());
            let end_lba = u64::from_le_bytes(buffer[offset + 24..offset + 32].try_into().unwrap());
            let data_size =
                u64::from_le_bytes(buffer[offset + 32..offset + 40].try_into().unwrap());
            let chunk_index = buffer[offset + 40];
            let chunk_flags = buffer[offset + 41];

            let part_info =
                super::types::PartitionInfo::new(i as u8, start_lba, end_lba, type_guid);
            let mut chunk = super::types::ChunkPartition::new(part_info, chunk_index);
            chunk.bytes_written = data_size;
            chunk.complete = chunk_flags & 0x01 != 0;

            chunks.add(chunk)?;
            chunks.bytes_written += data_size;
        }

        let info = IsoManifestInfo {
            name,
            total_size,
            sha256,
            flags,
        };

        Ok((info, chunks))
    }

    /// Read manifest from ESP
    pub fn read_from_esp<B: BlockIo>(
        block_io: &mut B,
        esp_start_lba: u64,
        manifest_offset: u64,
    ) -> DiskResult<(IsoManifestInfo, ChunkSet)> {
        // Read 2 sectors
        let mut buffer = [0u8; SECTOR_SIZE * 2];
        block_io
            .read_blocks(
                Lba(esp_start_lba + manifest_offset),
                &mut buffer[0..SECTOR_SIZE],
            )
            .map_err(|_| DiskError::IoError)?;
        block_io
            .read_blocks(
                Lba(esp_start_lba + manifest_offset + 1),
                &mut buffer[SECTOR_SIZE..],
            )
            .map_err(|_| DiskError::IoError)?;

        Self::parse(&buffer)
    }
}

/// Parsed manifest information
#[derive(Debug, Clone)]
pub struct IsoManifestInfo {
    /// ISO name
    pub name: [u8; MAX_ISO_NAME_LEN],
    /// Total size
    pub total_size: u64,
    /// SHA256 hash
    pub sha256: [u8; 32],
    /// Flags
    pub flags: u8,
}

impl IsoManifestInfo {
    /// Get name as str
    pub fn name_str(&self) -> &str {
        let len = self
            .name
            .iter()
            .position(|&c| c == 0)
            .unwrap_or(self.name.len());
        core::str::from_utf8(&self.name[..len]).unwrap_or("")
    }

    /// Check if complete
    pub fn is_complete(&self) -> bool {
        self.flags & flags::COMPLETE != 0
    }

    /// Check if verified
    pub fn is_verified(&self) -> bool {
        self.flags & flags::VERIFIED != 0
    }
}

/// CRC32 (IEEE 802.3)
fn crc32(data: &[u8]) -> u32 {
    const POLYNOMIAL: u32 = 0xEDB88320;
    let mut crc = 0xFFFF_FFFFu32;

    for &byte in data {
        crc ^= byte as u32;
        for _ in 0..8 {
            if crc & 1 != 0 {
                crc = (crc >> 1) ^ POLYNOMIAL;
            } else {
                crc >>= 1;
            }
        }
    }

    !crc
}