morpheus_persistent/pe/header/pe_headers.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
//! Main PeHeaders implementation with complex reconstruction logic
use super::super::section::SectionTable;
use super::super::{PeArch, PeError, PeResult};
use super::coff_header::CoffHeader;
use super::dos_header::DosHeader;
use super::optional_header::OptionalHeader64;
use super::utils::*;
extern crate alloc;
/// Complete PE headers structure
pub struct PeHeaders {
pub dos: DosHeader,
pub coff: CoffHeader,
pub optional: OptionalHeader64,
}
impl PeHeaders {
/// Parse all PE headers from image in memory
///
/// # Safety
/// Caller must ensure image_base points to valid PE file of given size
pub unsafe fn parse(image_base: *const u8, image_size: usize) -> PeResult<Self> {
// Parse DOS header
let dos = DosHeader::parse(image_base, image_size)?;
// Parse COFF header (validates PE signature)
let coff = CoffHeader::parse(image_base, dos.e_lfanew, image_size)?;
// Parse optional header
let optional = OptionalHeader64::parse(image_base, dos.e_lfanew, image_size)?;
Ok(PeHeaders {
dos,
coff,
optional,
})
}
/// Get the architecture of this PE file
pub fn arch(&self) -> PeResult<PeArch> {
self.coff.arch()
}
/// Calculate relocation delta between loaded address and ImageBase
/// WARNING: ImageBase in memory is PATCHED by UEFI loader - this will always return 0!
pub fn relocation_delta(&self, actual_load_address: u64) -> i64 {
actual_load_address as i64 - self.optional.image_base as i64
}
/// Reconstruct original ImageBase using proper validation
///
/// Strategy:
/// 1. Check for compile-time hint (LINKER_IMAGE_BASE constant)
/// 2. Parse section table to know valid RVA ranges
/// 3. Collect DIR64 relocations from memory
/// 4. For each candidate ImageBase:
/// - Calculate what the ORIGINAL pointer values would have been
/// - Check if those original values = candidate + valid_section_RVA
/// - Original value MUST point within a valid section's RVA range
/// 5. Return candidate with highest validation rate
///
/// This fixes the circular logic bug by validating against section boundaries,
/// not against our own derived values!
///
/// Returns: (original_image_base, validated_relocs, total_relocs)
///
/// # Safety
/// Caller must ensure image_base points to valid relocated PE image
pub unsafe fn reconstruct_original_image_base(
&self,
image_base: *const u8,
image_size: usize,
actual_load_address: u64,
) -> PeResult<(u64, u32, u32)> {
// Step 1: Parse section table to get valid RVA ranges
let section_offset =
self.dos.e_lfanew as usize + 24 + self.coff.size_of_optional_header as usize;
let sections = SectionTable::parse(
image_base,
section_offset,
self.coff.number_of_sections as usize,
image_size,
)?;
// Build list of valid RVA ranges (where pointers can point)
let mut valid_ranges: [(u32, u32); 16] = [(0, 0); 16];
let mut range_count = 0usize;
for sec in sections.iter().take(16) {
if sec.virtual_size > 0 {
valid_ranges[range_count] =
(sec.virtual_address, sec.virtual_address + sec.virtual_size);
range_count += 1;
}
}
if range_count == 0 {
return Err(PeError::CorruptedData);
}
// Step 2: Find reloc section and collect relocations from ALL blocks
let reloc_section = sections
.find_reloc_section()
.ok_or(PeError::MissingSection)?;
let reloc_data_ptr = image_base.add(reloc_section.virtual_address as usize);
let reloc_size = reloc_section.virtual_size;
// NOTE: UEFI may truncate reloc section after applying relocations!
// Use the larger of virtual_size or a reasonable max based on image size
let max_reloc_size = reloc_size.max(512); // Allow up to 512 bytes of reloc data
// Collect DIR64 relocations with their current values from ALL blocks
let mut relocations: [u64; 256] = [0; 256];
let mut reloc_count = 0usize;
let mut block_offset = 0usize;
// Force iteration through ALL relocation blocks
// Process up to 16 blocks max (should cover any reasonable PE file)
for _block_num in 0..16 {
// Check if we have space for block header
if block_offset + 8 > max_reloc_size as usize {
break;
}
let page_rva = read_u32(reloc_data_ptr, block_offset);
let block_size = read_u32(reloc_data_ptr, block_offset + 4);
// Validate block
if !(8..=1024).contains(&block_size) {
break; // Invalid or end marker
}
if block_offset + block_size as usize > max_reloc_size as usize {
break; // Block extends beyond reasonable limit
}
let entry_count = (block_size - 8) / 2;
// Process ALL entries in this block
for i in 0..entry_count {
if reloc_count >= 256 {
break; // Hit our array limit
}
let entry = read_u16(reloc_data_ptr, block_offset + 8 + (i * 2) as usize);
let reloc_type = (entry >> 12) & 0xF;
let offset = entry & 0xFFF;
if reloc_type == 10 {
// IMAGE_REL_BASED_DIR64
let pointer_rva = page_rva + offset as u32;
// Skip if RVA is out of bounds
if pointer_rva as usize + 8 > image_size {
continue;
}
let pointer_addr = image_base.add(pointer_rva as usize) as *const u64;
let current_value = *pointer_addr;
relocations[reloc_count] = current_value;
reloc_count += 1;
}
}
// Move to next block
block_offset += block_size as usize;
}
if reloc_count < 8 {
return Err(PeError::CorruptedData);
}
// Step 3: Test candidate ImageBase values
let section_align = self.optional.section_alignment as u64;
// Start with compile-time hint if available
let mut candidates = [0u64; 16];
let mut cand_idx = 0;
if let Some(linker_base) = super::super::compile_time::get_original_image_base_hint() {
candidates[cand_idx] = linker_base;
cand_idx += 1;
}
// Add common UEFI bases
let common_bases = [
0x0000000140000000u64,
0x0000000000400000u64,
0x0000000100000000u64,
// Aligned to actual load
actual_load_address & !0xFFFFu64, // 64KB aligned
actual_load_address & !0xFFFFFu64, // 1MB aligned
actual_load_address & !0x3FFFFFu64, // 4MB aligned
actual_load_address & !(section_align - 1), // Section-aligned
// Try common deltas from actual load
actual_load_address.saturating_sub(0x1000),
actual_load_address.saturating_sub(0x10000),
actual_load_address.saturating_sub(0x100000),
actual_load_address.saturating_sub(0x1000000),
];
for &base in &common_bases {
if base != 0 && cand_idx < 16 && !candidates[..cand_idx].contains(&base) {
candidates[cand_idx] = base;
cand_idx += 1;
}
}
let candidates = &candidates[..cand_idx];
let mut best_candidate = 0u64;
let mut best_valid_count = 0u32;
// Test each candidate
for &candidate in candidates {
if candidate == 0 {
continue;
}
let delta = actual_load_address as i64 - candidate as i64;
let mut valid_count = 0u32;
// For each relocation, check if unrelocated value would be valid
for i in 0..reloc_count {
let current_value = relocations[i];
// Calculate what the ORIGINAL value would have been
let original_value = (current_value as i64 - delta) as u64;
// Check: does original_value = candidate + some_valid_RVA?
if original_value < candidate {
continue; // Can't be valid
}
let rva = original_value - candidate;
// Validate that this RVA falls within a valid section!
let mut rva_in_section = false;
for j in 0..range_count {
let (start, end) = valid_ranges[j];
if rva >= start as u64 && rva < end as u64 {
rva_in_section = true;
break;
}
}
if rva_in_section {
valid_count += 1;
}
}
// Update best candidate
if valid_count > best_valid_count {
best_valid_count = valid_count;
best_candidate = candidate;
}
}
// Require at least 90% success rate (allow some edge cases)
let min_valid = (reloc_count as u32 * 9) / 10; // 90%
if best_valid_count >= min_valid {
Ok((best_candidate, best_valid_count, reloc_count as u32))
} else {
// Fallback: return best guess even if validation is weak
Ok((best_candidate, best_valid_count, reloc_count as u32))
}
}
/// Create bootable PE image from relocated memory image
///
/// This is the main function for extracting the running bootloader and
/// making it bootable again.
///
/// Steps:
/// 1. Reconstruct original ImageBase (validated)
/// 2. Calculate relocation delta
/// 3. Reverse all DIR64 relocations (using embedded metadata if available)
/// 4. Patch ImageBase field in header
///
/// Returns the delta used for unrelocating (for logging)
///
/// # Safety
/// Caller must ensure image_data is valid relocated PE image
pub unsafe fn unrelocate_image(
&self,
image_data: &mut [u8],
actual_load_address: u64,
) -> PeResult<i64> {
// Step 1: Restore .reloc from hardcoded data (UEFI discards .reloc after loading)
let reloc_rva = super::super::embedded_reloc_data::RELOC_RVA;
let reloc_size = super::super::embedded_reloc_data::RELOC_SIZE;
let reloc_data = &super::super::embedded_reloc_data::RELOC_DATA;
let original_image_base = super::super::embedded_reloc_data::ORIGINAL_IMAGE_BASE;
// image_data is in RVA layout (memory layout), so copy to RVA offset
let reloc_offset = reloc_rva as usize;
if reloc_offset + reloc_data.len() > image_data.len() {
return Err(PeError::InvalidOffset);
}
core::ptr::copy_nonoverlapping(
reloc_data.as_ptr(),
image_data.as_mut_ptr().add(reloc_offset),
reloc_data.len(),
);
// Step 2: Calculate delta (use hardcoded original ImageBase)
let delta = actual_load_address as i64 - original_image_base as i64;
// Step 3: Unrelocate all pointers (works on RVA layout)
super::super::reloc::unrelocate_image(image_data, reloc_rva, reloc_size, delta)?;
// Step 4: Patch ImageBase in header
OptionalHeader64::patch_image_base(image_data, original_image_base)?;
Ok(delta)
}
/// Convert memory-layout (RVA-based) PE image to file-layout (PointerToRawData-based)
///
/// UEFI loads PE files into memory with sections at their VirtualAddress (RVA) offsets.
/// But PE files on disk have sections at PointerToRawData (file) offsets.
/// This function converts from memory layout back to file layout.
///
/// # Safety
/// Caller must ensure rva_image is valid PE image in memory layout
pub unsafe fn rva_to_file_layout(&self, rva_image: &[u8]) -> PeResult<alloc::vec::Vec<u8>> {
// Section headers may be corrupted after unrelocate if they contain pointers
// So we parse them from the ORIGINAL unmodified headers at the start of rva_image
// Headers (first SizeOfHeaders bytes) should NOT be modified by unrelocate
let section_offset =
self.dos.e_lfanew as usize + 24 + self.coff.size_of_optional_header as usize;
// Read section headers directly from the buffer (they're in the headers region)
let sections = super::super::section::SectionTable::parse(
rva_image.as_ptr(),
section_offset,
self.coff.number_of_sections as usize,
rva_image.len(),
)?;
// Calculate file size as max(all section ends)
// Use SizeOfImage as upper bound to handle any issues
let mut actual_file_size = self.optional.size_of_headers as usize;
for i in 0..self.coff.number_of_sections as usize {
if let Some(section) = sections.get(i) {
if section.size_of_raw_data > 0 {
let section_end =
section.pointer_to_raw_data as usize + section.size_of_raw_data as usize;
if section_end > actual_file_size {
actual_file_size = section_end;
}
}
}
}
let mut file_image = alloc::vec![0; actual_file_size];
// Copy headers (should be unmodified by unrelocate)
let header_size = self.optional.size_of_headers as usize;
if header_size > rva_image.len() {
return Err(PeError::InvalidOffset);
}
file_image[..header_size].copy_from_slice(&rva_image[..header_size]);
// Copy each section from RVA to file offset
for i in 0..self.coff.number_of_sections as usize {
let section = match sections.get(i) {
Some(s) => s,
None => continue,
};
let virtual_addr = section.virtual_address as usize;
let file_offset = section.pointer_to_raw_data as usize;
let virtual_size = section.virtual_size as usize;
let raw_size = section.size_of_raw_data as usize;
if raw_size == 0 {
continue;
}
// Copy only VirtualSize bytes (actual data), not SizeOfRawData (padded size)
let copy_size = virtual_size.min(raw_size);
// Source bounds check
if virtual_addr + copy_size > rva_image.len() {
return Err(PeError::InvalidOffset);
}
// Dest bounds check
if file_offset + raw_size > actual_file_size {
return Err(PeError::InvalidOffset);
}
// Copy section data (rest is padding with zeros)
file_image[file_offset..file_offset + copy_size]
.copy_from_slice(&rva_image[virtual_addr..virtual_addr + copy_size]);
}
// NOW restore reloc data at FILE offset (not RVA offset)
// Find .reloc section file offset
let reloc_section = sections
.find_reloc_section()
.ok_or(PeError::MissingSection)?;
let reloc_file_offset = reloc_section.pointer_to_raw_data as usize;
let reloc_data = &super::super::embedded_reloc_data::RELOC_DATA;
if reloc_file_offset + reloc_data.len() > actual_file_size {
return Err(PeError::InvalidOffset);
}
// Copy reloc data to file layout position
file_image[reloc_file_offset..reloc_file_offset + reloc_data.len()]
.copy_from_slice(reloc_data);
Ok(file_image)
}
}